MODELO MATEMÁTICO DE PROGRAMACIÓN ENTERA NO LINEAL EN UN AMBIENTE JOB-SHOP Y MAQUINAS EN SERIE Y PARALELO
Resumen
Este artículo presenta un modelo de programación matemática no lineal entera mixta para resolver un problema de programación de máquinas en serie y en paralelo en un entorno Job-Shop. El modelo PNLEM determina el makespan, la secuencia y la ruta de ejecución de los trabajos en las diferentes máquinas.
Citas
A. P. Gnetis, P. Detti, et al., «Scheduling nonpreemptive jobs on parallel machines subject to exponential unrecoverable interruptions», Computers & Operations Research 79: 109-118. 2017.
A. C. Beezão, J. F. Cordeau, et al., «Scheduling identical parallel machines with tooling constraints», European Journal of Operational Research 257(3): 834-844. 2017.
A. Cataldo, A. Perizzato, et al., «Production scheduling of parallel machines with model predictive control», Control Engineering Practice 42: 28-40. 2015.
B. C. Choi, M. J. Park, «Two-agent parallel machine scheduling with a restricted number of overlapped reserved tasks», European Journal of Operational Research 260(2): 514-519. 2017.
L. Epstein and E. Kleiman, «Scheduling selfish jobs on multidimensional parallel machines», Theoretical Computer Science 694: 42-59. 2017.
L. Fanjul-Peyro, F. Perea, et al. «Models and matheuristics for the unrelated parallel machine scheduling problem with additional resources», European Journal of Operational Research 260(2) 482-493. 2017.
A. Gara-Ali, G. Finke, et al. «Parallel-machine scheduling with maintenance: Praising the assignment problem», European Journal of Operational Research 252(1): 90-97. 2016.
P. Györgyi, «A PTAS for a resource scheduling problem with arbitrary number of parallel machines». Operations Research Letters 45(6): 604-609. 2017.
P. Györgyi and T. Kis, «Approximation schemes for parallel machine scheduling with non-renewable resources», European Journal of Operational Research 258(1): 113-123. 2017.
D. Jiang and J. Tan. «Scheduling with job rejection and nonsimultaneous machine available time on unrelated parallel machines.» Theoretical Computer Science 616: 94-99. 2016.
Y. Jiang, T. Li, et al. «Kinematic error modeling and identification of the over-constrained parallel kinematic machine.» Robotics and Computer-Integrated Manufacturing 49: 105-119. 2018.