MODELO MATEMÁTICO DE INTEGRACIÓN DE PRODUCCIÓN E INVENTARIOS EN UNA RED LOGÍSTICA PLANTAS, DISTRIBUIDORES Y DETALLISTAS

Resumen

Este artículo presenta un modelo matemático de programación no lineal que coordina los inventarios y la producción en una red logística conformada por plantas, distribuidores y detallistas. El procedimiento para formular y resolver el modelo matemático utiliza programación no lineal, programación lineal,  heurísticas y relajación lagrangiana por etapas.

DOI: http://dx.doi.org/10.21017/rimci.2022.v9.n18.a122

Biografía del autor/a

César Augusto Pineda Pérez, Corporación Universitaria Republicana

Magister en Ingeniería Industrial, Especialista en Ingeniería de Producción e Ingeniero Industrial de la Universidad Distrital. Docente investigador del grupo O.C.A de la Corporación universitaria republicana.

Citas

K. Govindan, V. Agarwal, J. D. Darbari, and P. C. Jha, “An integrated decision-making model for the selection of sustainable forward and reverse logistic providers,” Ann. Oper. Res., vol. 273, no. 1–2, doi:10.1007/s10479-017-2654-5. 2019.

D. Tuljak-Suban and P. Bajec, “Integration of AHP and GTMA to make a reliable decision in complex decision making problems: Application of the logistics provider selection problem as a case study,” Symmetry (Basel)., vol. 12, no. 5, doi:10.3390/SYM12050766. 2020.

A. Melkonyan, T. Gruchmann, F. Lohmar, V. Kamath, and S. Spinler, “Sustainability assessment of last-mile logistics and distribution strategies: The case of local food networks,” Int. J. Prod. Econ., vol. 228, doi:10.1016/j.ijpe.2020.107746. 2020.

S. Meutia, K. Anshar, and Subhan, “Determining Supply Chain Network Using Location, Invetory, Routing Problem (LIRP) Approaches,” in Journal of Physics: Conference Series, 2021, vol. 1933, no. 1, doi: 10.1088/1742-6596/1933/1/012119.

R. Pietron, “Cooperation platform for distributed manufacturing,” Decis. Mak. Manuf. Serv., vol. 14, no. 2, doi: 10.7494/dmms.2020.14.2.3650. 2021.

S. Gupta, S. Chaudhary, P. Chatterjee, and M. Yazdani, “An efficient stochastic programming approach for solving transportation and inventory management problem using goodness of fit,” Kybernetes, doi:10.1108/K-08-2020-0495. 2021.

Z. Y. Liu and P. T. Guo, “Supply Chain Decision Model Based on Blockchain: A Case Study of Fresh Food E-Commerce Supply Chain Performance Improvement,” Discret. Dyn. Nat. Soc., vol. 2021, doi:10.1155/2021/5795547. 2021.

M. Golestani, S. H. Moosavirad, Y. Asadi, and S. Biglari, “A Multi-Objective Green Hub Location Problem with Multi Item-Multi Temperature Joint Distribution for Perishable Products in Cold Supply Chain,” Sustain. Prod. Consum., vol. 27, doi:10.1016/j.spc.2021.02.026. 2021.

R. Agrawal, V. A. Wankhede, A. Kumar, S. Luthra, and D. Huisingh, “Progress and trends in integrating Industry 4.0 within Circular Economy: A comprehensive literature review and future research propositions,” Bus. Strateg. Environ., doi: 10.1002/bse.2910. 2021.

L. Huang, Y. Tan, and X. Guan, “Evaluation of Cruise Ship Supply Logistics Service Providers with ANP-RBF,” J. Adv. Transp., vol. 2021, doi: 10.1155/2021/6645946. 2021.

B. V. R. Furlanetto, F. A. S. Marins, A. F. da Silva, and C. M. Defalque, “Optimization of a logistics network considering allocation of facilities and taxation aspects,” Gest. e Prod., vol. 27, no. 4, doi:10.1590/0104-530X4918-20. 2021.

T. Liang and H. Wang, “Consumer decisionmaking and smart logistics planning based on FPGA and convolutional neural network,” Microprocess. Microsyst., vol. 80, doi: 10.1016/j.micpro.2020.103628. 2021.

G. Li, “Development of cold chain logistics transportation system based on 5G network and Internet of things system,” Microprocess. Microsyst., vol. 80, doi: 10.1016/j.micpro.2020.103565. 2021.

R. Aldrighetti, D. Battini, D. Ivanov, and I. Zennaro, “Costs of resilience and disruptions in supply chain network design models: A review and future research directions,” Int. J. Prod. Econ., vol. 235, doi:10.1016/j.ijpe.2021.108103. 2021.

A. M. Jalal, E. A. V. Toso, and R. Morabito, “Integrated approaches for logistics network planning: a systematic literature review,” International Journal of Production Research, doi: 10.1080/00207543.2021.1963875. 2021.

S. Belieres, M. Hewitt, N. Jozefowiez, and F. Semet, "A time-expanded network reduction matheuristic for the logistics service network design problem,” Transp. Res. Part E Logist. Transp. Rev., vol. 147, doi: 10.1016/j.tre.2020.102203. 2021

Y. Cheng and X. Pan, “Design of a Support System for Complicated Logistics Location Integrating Big Data,” Adv. Civ. Eng., vol. 2021, 2021, doi: 10.1155/2021/6697755. 2021.

Publicado
2022-07-31
Cómo citar
[1]
C. Pineda Pérez, «MODELO MATEMÁTICO DE INTEGRACIÓN DE PRODUCCIÓN E INVENTARIOS EN UNA RED LOGÍSTICA PLANTAS, DISTRIBUIDORES Y DETALLISTA»S, RIMCI, vol. 9, n.º 18, pp. 89-115, jul. 2022.